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Introduction

Multi IMU

Polulu Altimu-10

Indoor Navigation for Fire Fighters:
I Non-GPS
I Infrastructure-free

Dead Reckoning navigation using
foot-mounted Micro-Electro
Mechanical Systems that can yield
accelerations, angular rates and
magnetic field strength in three axis.

ZUPT-based INS

Direct integration of the sensor readings outputs unusable results due to the
sensor noise and numerical instability. Zero-velocity Update is a technique
for inertial-based INS in which simple model of the step (namely stance phase
or zero-velocity phase) is used to correct the integration.
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Kalman Filter for INS

Foxlin [2] proposed a ZUPT-based technique implemented by the means of
the Kalman Filter in which zero-velocity states are treated as
pseudo-observations. Error in sensor (or foot) orientation is computed by
“alignment transfer” (using Caley’s Formula) — a technique that correlates
errors in velocity with orientation estimation errors.
Our approach (described below) uses model fusion: orientation is computed
continuously by the state-of-the-art orientation filter and then utilized in
simplified form of Foxlin technique.

PREDICTION

A priori state x̂k can be derived from
time-controlled recursive equation

x̂k :=

[
pk

vk

]
:=

[
pk−1 + vk−1∆t
vk−1 + aN

k ∆t

]
,

(1)
where conversion from sensor frame to
navigational frame is given by

aN
k := qest,k⊗ aS

k ⊗ q−1
est,k− g0, (2)

and error covariance

P̂k := AkPk−1AT
k + Q, (3)

with state transition matrix

A :=

[
I3x3 0

∆tI3x3 I3x3

]
. (4)

UPDATE

When the zero-velocity test is triggered
Kalman Gain matrix is computed:

Kk := PkHT(HPkHT + R)
−1
, (5)

and according to our initial hypothesis
we can compute a posteriori state:

xk := Kk(01x3 − Hx̂k), (6)

and a posteriori covariance error:

Pk := (I3x3− KkH)P̂k−1, (7)

since our initial assumption concer
velocity, observation matrix is:

H :=
[
03x3 I3x3

]
. (8)

MODEL FUSION

Following iterative schema is used to estimate orientation:

qest,k := qest,k−1 + (q̇ω,k − βq̇ε,k)∆t. (9)

In the fusion step estimated sensor orientation qest,m is computed using
previous estimate and quaternion calculated from gyroscope angular
rates q̇ω,m. Simultaneously, the direction of estimated error q̇ε,m := ∇f

‖∇f‖ is

discarded, where ∇f := ∇qf(q̇ω,m, aE, aS) is the objective function
gradient with respect to q Objective function is defined as:

f(q, aE, aS) = q−1 ⊗ aE ⊗ q− aS. (10)

We refer to [3] for details of the Madgwick’s algorithm.

Main challenges

I Filter is not optimal (model mismatch),
I Sensor calibration and biases,
I Gyroscope drift,
I Fast movements are not recorded by off-the-shelf circuits

Experimental Results

Experiments were conducted by our prototype implementation and also using
reference dataset [1] with ground-truth data obtained by optical system and
visual markers.
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Path estimated by state-of-the-art algorithm
(green), our model fusion technique (blue)
and ground-truth data(red).
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Probability of error on single step.

Most of the errors are introduced on certain steps (on turns and during
sudden movements), in which sensors are not able to properly record the
stride due to the sensor bandwith and range. Our simple approach
outperforms existing state-of-the art implementation using the fact that
acceleration vector should be aligned with respect to the orientation estimates
— this works the best for estimating orientation in motion.

QSA, QSF and ZUPT

Illustation of different correction possible during single stride [4].

Quasi-Static Acceleration Update: if v = 0 or v attains local extremum we
can assume that aN ≈ g0 therefore analytical correction of roll and pitch
angles can be derived.

Quasi-Static Field Update: yaw angle can be corrected using magnetometer
— additional detection should be applied due to much interference in
magnetic field indoors. See [4] for details.

Future Work

I Two shoe system (with synthetic magnetic field update),
I Inertial INS with inter-agent ranging via UWB TOF,
I Path-level correction using buildings maps.
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